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Abstract

This paper provides new evidence on the determinants of environmental innovation. We employ panel
data models to study how environmental innovation by US manufacturing industries responded to changes
in pollution abatement expenditures and regulatory enforcement during the period 1983 through 1992. We
find that (1) environmental innovation (as measured by the number of successful environmental patent
applications granted to the industry) responded to increases in pollution abatement expenditures, however,
(2) increased monitoring and enforcement activities related to existing regulations did not provide any
additional incentive to innovate. We also find some empirical evidence that environmental innovation is
more likely to occur in industries that are internationally competitive.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Every year, US firms devote significant resources to develop new methods of reducing or
treating air or water emissions, recycling or reusing waste, finding cleaner energy sources and
other methods of environmental protection. Hundreds of new patents are granted every year for
these environmental innovations. Yet, we know little about why firms invest in environmental
research. One obvious candidate is to reduce the cost of complying with regulations. US firms are
estimated to be spending between $170-185 billion annually complying with environmental
regulations, an increase of about 50% over 1990 spending levels [36]. Using a general equilibrium
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model, Jorgenson and Wilcoxen [15] estimate that these abatement costs lowered the annual
growth of US GNP by 0.2 percent per year between 1973 and 1985. Given overall annual growth
rates of 2-3% per year, reductions of this magnitude are significant. Gray and Shadbegian [§]
conducted a plant level analysis of compliance costs and productivity, and found that more
regulated firms have significantly lower productivity levels and slower productivity growth than
less regulated firms.

Given the significant regulatory and non-regulatory pressures on firms to abate pollution and
the resultant cost burden, it is natural to wonder whether environmental innovation is a response
to these pressures or to other market forces such as international competition and industry or
economy-wide characteristics. Do firms respond to these pressures by investing in new innovative
technologies that might lower the cost of environmental protection? In that regard, the literature
to date is sparse. We provide new evidence on the determinants of environmental innovation by
examining a panel data set that covers 146 US manufacturing industries at the three-digit SIC
level from 1983 to 1992. Abatement pressures stemming from regulatory and/or other non-
regulatory sources are proxied by pollution abatement costs and government monitoring
activities. Innovation is proxied by the number of successful environmentally related patent
applications granted to the industry. Our empirical results show that (1) there is a significant
positive relationship between pollution abatement expenditures and environmental patents,
however (2) there is no evidence that the frequency of government monitoring affects innovative
activity. Finally, we also find some empirical evidence that environmental innovation is more
likely to occur in industries that are internationally competitive.

This paper contributes to the existing literature in several ways. The limited empirical evidence
to date is based either on univariate comparisons of abatement expenditures and innovation or on
overall (not environmental) innovation. Unlike previous studies, we closely follow the industrial
organization literature to explicitly model the factors that contribute to innovation and estimate
the relationship between abatement pressures and environmental innovation in a multivariate
regression analysis. To our knowledge, this is also the first paper that examines the relationship
between government monitoring activities and environmental innovation.

The remainder of the paper is organized as follows. In Section 2 we present a brief review of the
literature on environmental regulation and innovation and on the determinants of innovation. We
present our theoretical framework and define the variables to be used in our empirical analysis in
Section 3. Our empirical findings are discussed in Section 4. The final section highlights the
contributions of this paper and provides suggestions for future research.

2. Prior literature on innovation
2.1. Abatement pressures and innovation

Profit-maximizing firms will always search for ways to lower the cost of doing business for a
given level and quality of output. Thus, we might expect abatement pressures that raise the cost of
doing business to prod firms to find lower cost methods of reducing pollution. Even this
proposition, however, is not necessarily true. As McCain [23] points out, firms might be reluctant
to innovate if they believe regulators will respond by ratcheting up standards even tighter. Thus,
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much has yet to be learned about the mechanisms that encourage firms to innovate and the extent
to which innovation is likely to occur in a given industry.

Several theoretical papers have examined the linkages between abatement pressures stemming
from environmental regulation and innovation. The objective of this body of literature has been
to determine which environmental policy instrument (emissions charges, permits, standards, etc.)
provides firms with the greatest incentive to innovate. Downing and White [6], and Milliman and
Prince [24] show that the incentive to innovate is stronger under market-based systems (e.g.
emission fees or permits) than under command and control regulations.

Porter and Van der Linde [29] go beyond the traditional literature by not only suggesting that
environmental regulations would pressure firms to innovate, but also that ultimately this
innovation could stimulate growth and competitiveness. While the latter claim is subject to much
criticism and debate (e.g. [27]), the former claim is both plausible and testable. Nevertheless, the
notion that environmental regulation can motivate firms to innovate has received only limited
empirical scrutiny in the literature. Much of that evidence is either anecdotal or based on a limited
industry case study. For example, Porter and van der Linde [29] cite several examples of
companies that have gained a competitive advantage through innovation in response to more
stringent environmental regulation. Burtraw [1] points out that the cost of the SO, permit trading
system turned out to be lower than earlier estimates, at least in part because of technological
innovation.

Two recent studies have begun to systematically explore the relationship between environ-
mental regulation and innovation. Lanjouw and Mody [18] construct a patent data set from 1972
to 1986 for the US, Japan and Germany in order to study the creation and diffusion of
environmental technologies. They use pollution abatement expenditures as an indicator of the
severity of environmental regulations, and find that innovation follows expenditures with a 1 to 2
year lag. Although they clearly show a correlation between expenditures and patents, Lanjouw
and Mody [18] neither model nor explicitly test the relationship between abatement expenditures
and environmental innovation by controlling for other factors that are also likely to affect
innovation.

Jaffe and Palmer [14] construct a panel data set for US manufacturing industries to determine
how abatement expenditures affect innovative activities. Innovation is proxied by two different
measures: total industry expenditures on R&D, and total number of successful patent applications
by industry. However, the authors do not attempt to model the link between R&D and patents
and instead analyze each separately. They find that higher lagged abatement costs lead to higher
levels of R&D expenditure. However, when they use patent applications as an indicator of
innovation, they find little evidence that they are related to abatement costs. Note that Jaffe and
Palmer [14] include in their analysis a// R&D and patents—whether environmentally related or
not.

Although previous studies have largely focused on measurable abatement expenditures,
regulatory pressures might also depend on government monitoring and enforcement. Increased
monitoring and enforcement is likely to lead to higher abatement expenditures since many firms
will not comply with regulations without the threat of penalties. However, monitoring and
enforcement might also lead to environmental improvements—and innovation—even if it does
not directly increase environmental expenditures. For example, environmental violators might be
penalized through loss of government contracts, firm reputation or other non-market sanctions
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[3.4]. Although previous empirical studies have demonstrated that increased government
monitoring activity increases regulatory compliance and/or improves environmental performance
of firms (see e.g. [4,21] for a survey of this literature), none have asked the related question of
whether increased government monitoring or enforcement has led to innovation.

Not all abatement pressures are regulatory in nature. Indeed, there is growing evidence that
firms respond to other external pressures for voluntary overcompliance such as local/interest
group pressures, customer demand or other social pressures (see e.g. [17,20]). While the
mechanisms through which these pressures operate upon a firm might vary, in many cases, they
are likely to raise at least the short-run cost of doing business. To the best of our knowledge, there
are no existing studies that have explicitly analyzed the impact of these external pressures on
innovation.

2.2. Other determinants of innovation

A number of studies in the industrial organization literature have focused on the determinants
of innovation in general. Their findings are relevant for modeling environmental innovation. The
cornerstone of this body of work is the contentious Schumpterian conjecture of a positive
relationship between market power and innovation, and that large firms are more innovative than
small firms [34]. Proponents of this view argue that monopolists enjoy superior access to capital,
ability to pool risks, and economies of scale in maintaining R&D laboratories. For example,
Scherer [31] and Mansfield [22] find a positive relationship between industry concentration and
innovative activity. However, opponents argue that highly concentrated industries face less
competitive pressure to innovate, while industries with a lot of firms investing in R&D are more
likely, through chance alone, to discover successful innovations. For example, Williamson [38]
and Geroski [7] find that concentration has a dampening effect on innovation. Thus, the
overall impact of market structure on innovation is ambiguous. Other determinants of innovation
at the industry level include capital intensity [13,32] and industry-specific technological
“opportunities” [5].

Finally, there is some evidence that foreign competition might spur innovation. Hughes [13]
finds that if foreign markets are more responsive to variety, increases in export intensity lead to
increases in R&D. In the context of environmental technologies, Scott [35] finds that R&D
investments in air emission controls by US manufacturing firms increased in response to foreign
competition. Porter and Van der Linde [29] also suggest that world demand is moving in the
direction of valuing low-pollution and energy-efficient products and processes. Thus, they
speculate that internationally competitive industries are more likely to innovate in response to
environmental regulation than industries that are uncompetitive to begin with.

3. Model and data

Our objective is to study the nature of the relationship, if any, between abatement pressures and
innovation. In modeling this relationship, we closely follow the existing industrial organization
literature on innovation [5,7] and add two new variables to incorporate the effect of abatement
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pressures on innovation. In particular, we estimate the following reduced form equation:

+ B4(CONC; ) + B5(CAPINT; ;) + Bs(EXPINT;,) + &;, (1)

where i indexes industry, ¢ indexes time, PATENTS is the number of successful patent
applications, PACE is the pollution abatement expenditure, VISITS is the number of air and
water pollution related inspections, EXPINT denotes export intensity, VALSHIP is the value of
industry shipments, CONC is industry concentration, CAPINT denotes capital intensity, o;
captures unobservable industry heterogeneity, y, represents time effects, and ¢;, is a residual error
term capturing all other effects. We do not impose a lag structure in this model because the
literature suggests that the lag between R&D expenditure and patent application filing is not very
large." The variables used in the model presented above are described next. We describe variations
of this basic model to check for robustness of our specification in Section 4.

3.1. Environmental innovation

Consistent with earlier studies, we use successful patent applications (PATENTS) as a proxy for
environmental innovation.? Unlike previous studies, however, we measure environmental patents.
These data were compiled from a database maintained by the Office of Technology Assessment
and Forecast of the United States Patent and Trademark Office. Patents involving hazardous or
toxic waste destruction or containment, recycling or reusing waste, acid rain prevention, solid
waste disposal, alternative energy sources, air pollution prevention and water pollution
prevention were counted as ‘“‘environmental patents.” The SIC industry to which each of these
patents belongs was determined based on the primary line of business of the organization that is
named first on the patent application.® A total of 3680 environmental patents were identified over
the 10-year period 1983-1992, about 370 per year.

"Hall et al. [10] found that the relationship between R&D and patent applications was close to contemporaneous
with some lag effects that were small and not well estimated. Griliches [9] observed that this is consistent with the
observation that patents tend to be taken out early in the life of a research project. Furthermore, our overall conclusions
were not significantly altered when we re-estimated Eq. (1) using 1 and 2 year lags on the exogenous variables.

2There are two potential problems with using patents as a proxy for innovative activity. First, although we assign
patents to the industry of origin, they might be more appropriately assigned to the industry of use (if different). We do
not know the industry of ultimate use—only the industry that originates the patent. However, this problem is also
inherent in using R&D expenditures. Second, the economic significance of a higher number of patents is not clear in the
sense that some patents may be worth more than others. Nevertheless, patent counts are suitable for our application
because we are primarily studying whether industries that are faced with heightened abatement costs engage in research
as a potential way of reducing those costs.

3 There will be some misclassification if an organization is granted a patent for a product or process different from its
primary line of business. Unfortunately, the Patent Office does not ask applicants to identify themselves by industry,
and there is no literature suggesting a better way to aggregate patent data to the industry level.
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3.2. Abatement pressures

Since no direct measure of “abatement pressures’ exists, we employ two proxies in this study:
pollution abatement costs (PACE) and government inspections and monitoring activities
(VISITS).

3.2.1. Pollution abatement and control expenditures (PACE)

The Census Bureau conducted the Pollution Abatement Cost and Expenditure (PACE) survey
annually between 1973 and 1994 (except for 1987). The survey collected information on both
pollution abatement capital and operating costs incurred by manufacturing firms.* Following
Gray and Shadbegian [8], operating cost data is used instead of capital expenditure because it has
fewer missing values. PACE operation and maintenance costs include salaries and wages, fuel and
electricity, materials, contract work and services, depreciation of abatement capital, and payment
to governmental units for sewage collection and solid waste collection and disposal. The survey
forms and instructions explicitly state that expenditures for research and development should not
be counted as abatement costs. Since the survey was not conducted in 1987, PACE values for that
year are interpolated.’

Previous research has focused on PACE as a measure of regulatory burden (e.g. see [8,14])
under the assumption that when regulations are tightened, firms will spend more on abatement.
Although we expect PACE to increase when regulations are tightened, other factors might
also cause PACE to increase. For example, external pressures from interest groups or customers
might cause firms to increase their abatement expenditures in an attempt to maintain a
good environmental reputation. Thus, if firms overcomply with existing regulations this
could also be reflected in increased PACE. However, we do not distinguish between regulatory
and overcompliance pressures, and instead focus on their combined effect in our analysis since
data at that level of detail are unavailable. Regardless, it is unclear why the incentives for
innovation would be any different if the pressures were for regulatory compliance or
overcompliance.

Factors other than abatement pressures are also likely to affect PACE, however. For example,
abatement expenditures for a given industry can change over time because of expansion
and contraction of output over business cycles. Similarly, expenditures across industries can
differ because of unobserved heterogeneity, such as type of output, productivity, and account-
ing practices. We control for this by introducing industry- and time-specific effects into our
model.

Despite the fact that many researchers rely upon PACE in empirical studies of the cost of
pollution control, there is growing concern about its reliability, use and interpretation. Industry
reported expenditures could understate true costs if overhead and managerial costs are excluded;
investment in more efficient facilities is discouraged due to new source bias [26]; abatement efforts
result in the crowding out of other productive investments and R&D [33]; and operational

*The survey covers approximately 17,000 establishments with 20 or more employees. Though the survey is conducted
at the firm level, only data aggregated at the two-, three- and four-digit SIC code is available to the public.

>Our main results are unaffected if we drop observations from 1987 instead of using interpolated estimates of
abatement costs.
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flexibility is lost [16].° On the other hand, reported expenditures can also overstate true costs if
there are complementarities between abatement and other productive activities and because of
induced technical change [29].” Abatement costs are also self-reported by industry and are hence
subject to manipulation. To the extent firms want to convince regulators they are imposing an
undue burden upon industry, PACE expenditures might be systematically overstated. Empirically,
the debate is still ongoing. Recently, Morgenstern et al. [25] have examined a panel data set
covering more than 800 manufacturing plants over the period 1979 through 1991 to address the
question of whether reported expenditures accurately measure the cost of environmental
regulations. They estimate a cost function model with fixed effects to account for productivity
differences across plants and find no statistically significant evidence of either over- or
understatement of true costs.

Even if PACE represents an over- or understatement of true costs, we would be able to use
these data for our purposes. We are primarily interested in the effect of changes in expenditures on
innovation—not in the level of expenditures. If industries respond to heightened abatement costs
by engaging in more research, we would expect a positive sign on f;, the coefficient of the
pollution abatement cost variable (PACE).

3.2.2. Government monitoring (VISITS)

Our second measure of abatement pressure is government monitoring activities. As noted in the
previous section, while increased monitoring and enforcement is likely to lead to higher abatement
expenditures, it might also affect firms by other non-market mechanisms or by imposing costs
outside the pollution abatement arena (e.g. loss of reputation or of government contracts). Thus,
while VISITS might be correlated with PACE, we are interested in measuring any independent
effect of monitoring on innovation.

To the extent that stricter government monitoring or enforcement induces firms to comply, they
might now seek less costly methods of complying. Thus, stricter monitoring and enforcement
might spur innovation as well. On the other hand, since there is evidence that EPA targets
industries with compliance problems, stricter monitoring and enforcement might have little effect
on innovation as firms in that industry step up their immediate compliance efforts by adopting
existing controls. These firms might not be able to wait for the time and uncertainty associated
with innovative activity. Thus, whether or not increased government enforcement and monitoring
has an effect on innovation is an empirical issue.

Data on the number of air and water pollution related inspections at the industry level was
obtained from the Environmental Protection Agency under a Freedom of Information Act
request. The data include all types of inspections (e.g. compliance evaluations by Federal, State
and local agents, reconnaissance, pretreatment audits, diagnostic checks, etc). If innovation within
an industry is spurred by increased inspections related to existing air and water regulations, we
would expect a positive sign on f,, the coefficient of the inspections variable (VISITS) On the

®General equilibrium analyses, such as Jorgenson and Wilcoxen [15], have also drawn a distinction between
“abatement expenditures” and “‘social costs”. The latter include spillover effects and welfare changes associated with
the regulation.

7 A related branch of the literature has found that ex-ante cost estimates often exceed ex-post measures of the cost of a
given regulation (see [11,28]).
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other hand, if increased monitoring reflects a lack of compliance history in an industry, that
industry might have little resources available for innovative activities, and we could observe a
negative sign on f3,.

3.3. Other control variables

Following the industrial organization literature on innovation, we include control variables
shown elsewhere to be important determinants of innovation. Unless otherwise noted, data on
industry variables were obtained from the Annual Survey of Manufacturers published by the US
Department of Commerce.

An industry with higher abatement expenditures or inspections may also have higher patenting
activity simply because it is larger in size. Thus, we control for industry size by including industry
level value of shipments (VALSHIP) as an additional explanatory variable in Eq. (1). Since larger
industries might be better suited to bear the high fixed costs and risks involved in research, we
expect the coefficient of the value of shipments variable () to be positive.

Market structure might also affect innovative activity. The four-firm concentration ratio
(CONC) is used in our analysis as an indicator of market structure.® These ratios were computed
from annual sales figures reported in the Ward’s Business Directories. The sign of the
concentration (CONC) coefficient, f,, is hard to predict given the debate surrounding the
Schumpeterian conjectures. Based on the literature, we expect to see a small and possibly
insignificant coefficient for concentration when industry fixed effects are used to control for
unobservable differences in technological opportunity.

Capital intensity (CAPINT) might also affect innovation within an industry.® However, given
the ambiguity in the literature, the sign of fs, the coefficient for capital intensity (CAPINT), is
difficult to predict.

The export intensity (EXPINT) variable takes into account the influence of trade on
environmental research. Export intensity is measured as the ratio of export related shipments to
total shipments in an industry, taken from data published by the Foreign Trade Division of the
US Department of Commerce. These data are only available at the two-digit SIC level for the
period in question. Thus, we use data at the two-digit SIC level as a proxy for export intensity at
the three-digit SIC level. To the extent that foreign markets are competitive and product variety is
valued, we expect more innovation in export intensive industries. In particular, if a significant
number of consumers in foreign countries demand green products, then the opportunity of
reaching more customers or charging premium prices via exports could make environmental R&D
more attractive. Thus, we would expect a positive sign on f¢, the coefficient for EXPINT.

The number of successful patent applications by an industry can also be affected by other
unobservable exogenous factors (o;). Chief amongst these factors is the ‘“‘technological
opportunity” available to the industry. In the fixed effects specification, this industry
heterogeneity is assumed to be relatively constant in the short and medium run and is represented

8Several other indicators such as the Herfindahl index, the number of small firms in the industry, and the market
share held by existing firms in the industry, have been proposed in the literature. We will not include them all because of
possible collinearity problems. Furthermore, none of these other variables have displaced the standard concentration
ratios.

° Capital intensity is measured as the ratio of new capital expenditure to total shipments in an industry.
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Table 1

Summary statistics for all industries

Variable Measurement Mean Standard deviation Min Max
PATENT Number 2.69 8.26 0 81
PACE Million dollars 98.2 245.7 0 2744
VISITS Number 150.5 269.7 0 2810
EXPINT Percent 13.82 7.64 2.2 34
VALSHIP Million dollars 18052 25375 47 239120
CONC Ratio 0.39 0.18 0.10 1
CAPINT Ratio 0.03 0.02 0.0005 0.55

The number of observations used in the computation is 1409.
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Fig. 1. Pollution abatement expenditures and environmental innovation.
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by a set of industry dummies. In contrast, industry heterogeneity is allowed to vary randomly
across industries in the random effects specification.

Finally, we include a set of year dummies to account for period specific events, such as
recessions, that could have economy-wide implications for patenting activity.'”

4. Empirical results

Table 1 presents the mean, standard deviation, minimum and maximum value across all
industries and years, for each variable used in our study. As a first step, we begin by graphing our
data on US environmental patent applications, abatement expenditure and monitoring for the
period 1981-1992. Fig. 1 depicts the historical trends in the level of patent applications and
pollution abatement expenditure in the US, and indicates that innovation follows expenditures

1°The base year is 1983.
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with about a 1 year lag. This is consistent with Lanjouw and Mody [18] who arrive at a similar
conclusion by using earlier data from the period 1972-1986. Fig. 1 also suggests that both patents
and abatement expenditures rose during the expansion years and fell during recession years.
However, the decline in abatement expenses during the early 1980s need not have stemmed
entirely from the recession. During the early years of the Reagan administration, EPA
Administrator Ann Gorsuch also initiated a scaling back in the implementation and enforcement
of several environmental programs [37]. Nevertheless, Fig. 1 indicates that we should control for
time-specific effects in our model.

Unlike Fig. 1 that suggests a positive correlation between abatement expenditures and
innovation, the relationship, if any, between monitoring effort and innovation is unclear from
Fig. 2. There appears to be a negative relationship during the early and late 1980s, and a weak
positive relationship in the mid-1980s.

Of course, Figs. 1 and 2 are simple correlations and do not capture the richness of the model
presented in the previous section. Our main results, using multivariate regression analyses, are
reported in Table 2. Our data cover 146 industries over the 10-year period 1983-1992. We exploit
the time-series and cross-sectional nature of the data by using panel data estimation techniques to
obtain estimates that are more efficient than those based only on time-series or cross-sectional
analysis.

We first estimate a linear fixed effects model (Model (1)), since unobservable factors that are
constant over time but vary across industries can influence patenting. The linear fixed effects
model is given by y;, = o; + 7, + Xi,f + ¢y, Where y is the dependent variable, X is the vector of
explanatory variables, o; are the industry-specific intercept terms, y, are the time effects, and ¢, is
a random disturbance term. In this model, all permanent inter-industry variation in patenting
activity is captured in the coefficients of the industry-specific dummies. Thus, the coefficients of
other explanatory variables in the fixed effects model only reflect the relationship between
patenting activity and these other variables in the within-industry across time dimension. An

25,000 525
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] - 475
20,000 L 450
[} ] L
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S ] - 400
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Fig. 2. Monitoring and environmental innovation.
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F-test rejects the null hypothesis that the industry-specific dummies are all equal. This suggests
that inter-industry differences such as variations in technological opportunity play a major role in
explaining variation in patenting activity. Hence, a pooled OLS model ignoring industry
heterogeneity would suffer from omitted variable bias.

We also estimate a Poisson count data model (Model (2)) since our dependent variable, the
number of successful patent applications y;,, is a non-negative integer. The Poisson distribution is
characterized by equidispersion, wherein a single parameter 4;, = o; exp(X;f5) is equal to both the
conditional mean, E(y;|X;,), and the conditional variance, V'(y;X;,). Cameron and Trivedi [2]
note that equidispersion of count data is not necessary for consistent estimation of the coefficients
as long as the conditional mean is correctly specified. However, overdispersion will cause the
computed maximum likelihood ¢ statistics to be inflated due to an underestimation of the
standard errors. Thus, we use the method of generalized estimating equations [19] in lieu of
conditional maximum likelihood to obtain “‘semi-robust” standard errors that are adjusted for
clustering by industry group.

An indication of overdispersion can be obtained by comparing the sample mean and variance.
In our case, the raw patent count data are highly overdispersed with a sample mean of 2.7 and a
variance of 68. An alternative to the Poisson is to specify a more general discrete distribution that
ensures non-negativity but does not impose equidispersion. A common choice is the Negative
Binomial distribution with conditional variance assumed to be a function of the conditional mean,
and conditional mean equal to («;/d;)exp(X;,f). The parameter «; is the unobserved industry
heterogeneity and J; is the dispersion parameter, both of which are permitted to vary across
industries. We estimate this model under both the fixed and random effects specification.

The Negative Binomial fixed effects model assumes that the dispersion varies across industries
but is constant over time. The model is estimated by conditioning on the sum of the patent counts
over time for each industry, as described in [12]. The estimated results for the Negative Binomial
fixed effects specification are presented under Model (3) of Table 2. In contrast, the dispersion is
allowed to vary randomly across industries in the Negative Binomial random effects model. The
model is estimated by maximum likelihood and the results are presented under Model (4) of
Table 2.

As shown in Table 2, our key results are qualitatively robust across the four models. The
magnitude of the coefficients does vary though. Thus, we will discuss the estimation results
primarily in terms of our preferred model, the Negative Binomial random effects, since it accounts
for overdispersion and performs well in terms of predicted values.''

The coefficient for PACE is significant and positive in all models. Even after controlling for
other factors, we find a positive association between pollution abatement expenditures and
environmental innovation over time. Since Model (4) is a non-linear specification, the PACE
coefficient of 0.0004 represents the semi-elasticity of patents with respect to PACE. Specifically,
mean patents are expected to increase by 0.04 percent when industry abatement expenditures
increase by $1 million (and other variables are held constant). Thus, we estimate that the
magnitude of this impact is economically small but statistically significant. This further confirms
our preliminary findings in Fig. 1 as well as the findings of Lanjouw and Mody [18]. This result

""'The mean number of patents predicted by the linear fixed effects model is the closest to the true mean, but the
predictions are not restricted to non-negative integers.
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Table 2
Effect of abatement pressures on environmental innovation
Model (1) Model (2) Model (3) Model (4)
Variable linear, Poisson, Negative binomial, Negative binomial,
fixed effects population averaged fixed effects random effects
PACE 0.0125 0.0005 0.0005 0.0004
(0.000)*** (0.004)*** (0.044)** (0.045)™*
VISITS —0.0025 —0.0002 0.0004 0.00009
(0.109) (0.760) (0.388) (0.822)
VALSHIP 0.00005 0.0000007 0.0000005 0.0000005
(0.002)*** (0.000)*** 0.012)** (0.004)***
CONC —0.6395 —0.8963 0.1067 —1.086
(0.477) (0.027)** (0.779) (0.004)***
CAPINT 4.6501 1.4138 1.581 1.1211
(0.270) (0.016)** (0.065)* (0.199)
EXPINT 0.0307 0.0180 0.0598 0.0237
(0.414) (0.214) (0.000)*** (0.086)*
1984 —0.3314 —0.1545 —0.023 —0.1286
(0.283) (0.299) (0.874) (0.265)
1985 —0.1634 —0.0481 0.0680 —0.0304
(0.591) (0.767) (0.651) (0.800)
1986 0.1020 0.1183 0.1672 0.099
(0.749) (0.376) (0.283) (0.439)
1987 0.1365 0.1082 0.0625 0.0219
(0.696) (0.408) (0.710) (0.880)
1988 —0.1577 0.0499 —0.0015 0.0154
(0.646) (0.735) (0.992) (0.908)
1989 —0.1509 0.1014 —0.1151 0.0023
(0.685) (0.495) (0.478) (0.987)
1990 —0.1820 0.0899 —0.1316 0.0639
(0.656) (0.531) (0.452) (0.708)
1991 0.2977 0.2642 —0.0837 0.2121
(0.504) (0.067)* (0.652) (0.270)
1992 0.1578 0.2249 —0.2175 0.1169
(0.728) (0.092)* (0.235) (0.545)
R 0.9206 — — _
Log likelihood — — —1111.16 —1542.75
Mean predicted patents 2.69 0.59 1.09 2.34

(1) The dependent variable is PATENTS. The regression coefficients are in the upper rows; p-values are in lower rows
(in brackets).
(2) Model (1) is estimated using the within regression least-squares method. Model (2) is estimated using the generalized
estimating equation method that provides semi-robust standard errors adjusted for clustering by industry. Model (3) is
estimated using conditional maximum likelihood and Model (4) is estimated using maximum likelihood estimation.
*** Indicates significance at p<0.01.
**Indicates significance at p<0.05.
*Indicates significance at p<0.10.
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also builds on Jaffe and Palmer [14], who find that lagged abatement expenditures have a
significant positive effect on overall R&D expenditure but an insignificant effect on patenting
when they control for industry fixed effects. The authors model these two effects separately and
do not speculate why increased R&D expenditure fails to translate into increased patents.
In contrast, we find evidence of a small, positive impact of abatement expenditures on patenting
by concentrating on environmental (and not overall) innovation and using more disaggregated
data.

The VISITS coefficient in our analysis is insignificant across all models, which is also consistent
with our preliminary findings based on Fig.2. One explanation is that VISITS might be
insignificant if it is highly correlated with PACE. However, the Pearson correlation coefficient
between VISITS and PACE is only 0.43. Furthermore, the VISITS coefficient remains
insignificant when we re-estimate the model after excluding the PACE variable. Thus we are
unable to find any evidence that increased monitoring provides any independent incentives for
innovation through, for example, direct or reputational penalties.

The control variables generally have the expected sign. The coefficient for VALSHIP is positive
and highly significant in all models indicating that there is a positive relationship between industry
output and patenting activity. The coefficient for CONC is negative and significant in Model (4)
suggesting that innovation is linked positively to domestic competitiveness. However, this
coefficient becomes insignificant in Models (1) and (3), which is consistent with earlier findings in
the industrial organization literature that market structure has a smaller impact on innovation
when industry fixed effects are included in the model. The coefficient of EXPINT is positive and
significant in Models (3) and (4), consistent with the notion that foreign demand for greener
products spurs environmental innovation. Model (4) indicates that a unit (1 percent) increase in
export intensity leads to a 2.4 percent increase in expected patents. No significant patterns
associated with across-the-board changes in environmental policy or economic conditions are
discernable from the coefficients of the time dummies.

These basic results are robust to several variations in the model specifications shown in Table 2,
including: the use of 1 and 2 year lags on the exogenous variables; the exclusion of CONC and
CAPINT; the inclusion of only one “‘regulatory stringency’” variable (PACE or VISITS) at a time;
estimation of separate regressions by year in licu of a panel data model; and estimation of a panel
data model after aggregation of all variables to the two-digit SIC level.'

5. Conclusions

This paper investigates the relationship between pollution abatement pressures (proxied by
changes in abatement costs and monitoring) and environmental innovation. A model of
innovation is estimated using a panel dataset of 146 US manufacturing industries tracked from
1983 to 1992. We find that, other things held constant, increases in pollution abatement
expenditures are associated with a small, but statistically significant increase in environmental
innovation (as measured by successful environmental patent applications). This is consistent with

2 The last specification was estimated because data on one of the variables, EXPINT, was only available at the
two-digit SIC level.
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the basic insights into the innovation process formulated by Schumpeter, as well as previous
limited empirical evidence on abatement expenditures and patents [14,18].

Although we can only speculate why the magnitude of our estimated effect is so small—about a
0.04 percentage increase in patents per $1 million in pollution abatement expenditures—we note
that our patent data exclude those innovations that are developed in academia or in the non-
manufacturing sectors. In addition, our analysis is a very conservative approach in that it ignores
the effect of industry-constant abatement expenditures on patents. Thus, or example, the fact that
one industry has a high PACE relative to industry-wide capital expenditures might induce firms in
that industry to seek more environmental patents. However, that effect would be captured in the
industry heterogeneity variable in our regression analysis. We also note that firms might be
reluctant to invest in R&D for fear that regulators will ratchet up the standards once new
technologies have been developed that lower the regulatory burden [23].

Although increased abatement pressures appear to increase patents, we find no evidence that an
increase in monitoring effort motivates innovation. Finally, we find moderate empirical support
for a positive relationship between the international competitiveness of an industry and its
innovative activity. Industries that have higher levels of foreign competition tend to have more
environmental patents.

It is important to note that our finding that environmental innovation occurs in response to
increases in abatement costs does not necessarily imply that net profits increase. It is quite possible
that despite these new innovations, there are high opportunity costs to diverting resources
towards environmental R&D. For example, Robinson [30] finds that EPA and OSHA regulations
divert economic resources and managerial attention away from productivity-enhancing
innovation. In that case, an increase in environmental innovation would not be expected to
lead to an overall increase in future competitiveness.

Our findings suggest the need for further research in understanding the relationship between
abatement pressures, innovation and competitiveness. A natural extension of our results would be
to determine if the increased innovation leads to increases or decreases in industry profitability. It
would also be useful to conduct a patent study using more disaggregated plant level data. The
issue of inter-country differences in environmental regulation and patenting activity also merits
examination. But these are all tasks for the future.
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